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The vibrational thermodynamic properties of doped anharmonic solids are inves- 
tigated using thermodynamic Green's functions. The study uses cubic and quartic 
anharmonic interactions, and different masses and force constants for the impur- 
ity and host lattice atoms. The explicit expressions so derived for the partition 
function, free energy, entropy, and lattice heat capacity for these solids in the 
low-impurity-concentration limit are discussed for various situations. Our results 
are modified due to the presence of interaction terms between the anharmonic 
and localized fields and reduce to those obtained by earlier workers as limiting 
cases. 

1. I N T R O D U C T I O N  

The thermodynamic properties of  anharmonic crystals have been dis- 
cussed by various workers (Maradudin et al., 1961 ; Born and Huang, 1954; 
Shukla and Miiller, 1970, 1971; Pathak, 1965; Shukla, 1966, 1980; Shukla 
and Wilk, 1974; Cowley and Shukla, 1974; Shukla and Taylor, 1974; Klein 
and Koehler, 1977; Barron, 1963; Pathak and Varshni, 1969; Leibfried and 
Ludwig, 1961). These authors have studied the free energy, partition func- 
tion, and specific heat of  anharmonic crystals using different approaches. 
Maradudin et al. (1961; Maradudin and Fein, 1962) have discussed the 
anharmonic contributions to the thermodynamic properties of  solids, start- 
ing with the expansion of the partition function, in terms of an anharmonic 
Hamiltonian. However, frequent use has been made of  harmonically 
approximated expressions in discussing anharmonic solids. Shukla and 
Miiller (1970, 1971; Shukla and Wilk, 1974; Shukla and Taylor, 1974) 
obtained the Helmholtz free energy by thermal averaging of the interaction 
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Hamiltonian instead of evaluating it through the partition function. More- 
over, the anharmonic terms (F3 and F4) in the expansion of the free energy 
have been replaced by the corresponding thermally averaged terms in the 
internal energy of system (Shukla and M/iller, 1970, 1971). The free energy 
and the lattice heat capacity (LHC) calculations have been carried out using 
various forms of the potentials, viz. Morse, Rydberg, and Born-Mayer 
potentials (Shukla, 1966, 1980). The energy and LHC of anharmonic crystals 
have also been discussed by Pathak (1965) quantum mechanically, making 
use of the thermal average of the crystal Hamiltonian. However, the cubic 
contribution to the energy has been approximated in terms of the quartic 
contribution, which has been thoroughly dealt with in an approximate way. 
Leibfried and Ludwig (1961 ; Maradudin et al., 1961 ; Maradudin and Fein, 
1962; Barron, 1963) have used perturbation techniques to estimate various 
vibronic thermodynamic properties. Formal expressions for these properties 
have been obtained by them in a semiclassical approach, using various 
models. 

In all the work cited above, no attempt has been made to account for 
the vibrational thermodynamic properties of doped anharmonic crystals. It 
is well known that the introduction of defects in the crystals changes their 
vibrational spectrum drastically (Elliott, 1966; Maradudin, 1966). Bahadur 
and Sharma (1974) have, however, studied the LHC of impure harmonic 
crystals with the aid of double-time thermal Green's functions. So far we 
have not come across any published work investigating the various thermo- 
dynamic properties of doped anharmonic crystals. 

In the present work, we investigate the partition function, free energy, 
and LHC of an isotopically disordered anharmonic crystal using thermo- 
dynamic Green's functions. The effects of mass and force constant change 
terms between the impurity and host lattice atoms are taken into account, 
and the cubic and quartic anharmonic terms are also retained in the crystal 
Hamiltonian. The present approach gives us an opportunity to study the 
effect of interaction terms, if any, between the crystal anharmonic and local- 
ized fields in discussing the above vibrational properties of the solids. Since 
the anharmonic and localized fields are simultaneously present in the same 
crystal, it is most likely that the phonons of one field may interact with 
the phonons of the other field, giving rise to the impurity-anharmonicity 
interaction in the interacting mode (Gairola, 1983, 1984, 1991 ; Indu, 1990). 
Our approach is based neither on the Bloch expansion formula (Maradudin 
et al., 1961 ; Pathak, 1965) nor on the semiclassicaI treatment (Barron, 1963; 
Pathak and Varshni, 1969; Leibfried and Ludwig, 1961), but is fully based 
on the quantum dynamics of phonons (Indu, 1990). Any change in the 
physical properties of a crystal due to the introduction of defects will lead 
to a change in the phonon spectrum, through changes in the density of states 



Thermodynamics of Impure Anharmonic Crystals 863 

(DOS). Therefore, we explore the vibrational thermodynamic properties by 
considering the changes in the DOS. The lattice energy is evaluated with the 
help of the DOS, which depends on the frequency and temperature (Indu, 
1990). So the present formulation is a sensitive, accurate, and systematic 
way to discuss the thermodynamic properties of doped anharmonic solids. 

This paper is divided into eight sections. Section 2 deals with the general 
thermodynamic features arranged sequentially, which are discussed in detail 
in the forthcoming sections. The Hamiltonian and Green's functions are 
discussed in Section 3. The anharmonic contributions to the partition func- 
tion (PF), free energy (FE), entropy, and LHC are evaluated in Sections 
4-7. Section 8 is devoted to discussion and conclusions. 

2. THERMODYNAMICS OF CRYSTALS 

To discuss the physical properties of a solid, which are often the thermal 
average values, the partition function provides us a convenient starting point. 
For our system, the partition function is defined as 

z = E  e (1) 

where fl = (kBT) -1 and E is the average lattice energy, which depends on nkj, 
the occupation number of the vibrating mode. The energy E of the system 
has been widely discussed as the thermal average ( H )  of the crystal Hamil- 
tonian by various workers (Shukla and Miiller, 1970, 1971 ; Pathak, 1965). 
Some authors (Born and Huang, 1954) have constructed E by summing the 
individual energies of the independent oscillators in a semiclassical approach. 
Maradudin et al. (1961 ; Maradudin and Fein, 1962) replaced E by H in 
equation (1) and considered the trace of the rhs in equation (1), using a 
Bloch expansion. We follow the approach of Indu (1990) to express E by 
its equivalent density of states (DOS) expression 

E = fdco N(co)(nkj+ �89 (2) 
3 

with N(c0), the DOS, being expressed in the Lehmann representation 
(Launay, 1956), 

N(co) = - ~  Im Gkk'(CO + ie) (3) 
k 

Here Gkk'(O)) is the Fourier-transformed Green's function for the system, to 
be discussed in Section 3. 
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The free energy is the usual expression 

F=  - f l - '  In Z (4) 

The entropy S of the system is given by 

S= - (  gg/,~T) = k~fl~V ~F (5) 

where V a = (~/Ofl has been introduced for convenience. The LHC Co is related 
to the entropy of the system by the following relation: 

Co = T(OS/(?T),--- -flVpS (6) 

3. FORMULATION 

It is evident from equation (3) that the calculation of the DOS is reduced 
to evaluating the Green's function for the system. The necessary Green's 
functions can be evaluated via the equation of motion method, as pro- 
pounded by Zubarev (1960), by considering the specific Hamiltonian. 

3.1. Hamiltonian for a Doped Anharmonic Crystal 

The Hamiltonian can be conveniently expressegi in the second quantized 
form as 

H= tfo + tt~ + HA (7) 

with 

H0 = (h/4) Z cok(A~Ak + B~B~) (8) 
k 

lid = - h  ~ [C(k,, k2)Bk,Bk2-D(k,, k2)Ak,Aj (9) 
klk2 

HA=h Z Z Vr (10) 
s > 3  klk2...ks 

Here V(S)(kl,k~,... ,ks) represent the various anharmonic coupling 
coefficients (Pathak, 1965) and C(kl, ks) and D(kl, k2) are the mass and the 
force constant change parameters, respectively (Bahadur and Sharma, 1974). 
In the above equations the index ks has been introduced to represent ksjs for 
brevity, with ks being the wave vector and js, the polarization index. 

3.2. Green's Functions and Phonon Spectrum 

Consider the following retarded double-time thermal Green's function 
(Zubarev, 1960) : 

Gk~,(t, t ')=-iO(t-t')([A~(t), dk,(t')])=((Ak(t); Ak,(t'))) (11) 
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Writing the equation of motion of G~k,(t, t') with the aid of Hamiltonian (7) 
and Fourier transforming, one finally gets the solution in the form (Gairola, 
1983, 1984; Indu, 1990) 

Gkk'(co) = lr--l cokrlkk'[co 2 -- O52__ 2cokP(kk', co)]-1 (12) 

where 

and 

rlkk ,= 5kk, + 4C(--k, k')co; t (13) 

o52 = co2+ (cok/Ztr) {(ILk(t), B~,(t')] ) 

+ (4/COk) Z C(-k, kO([Lk(t), B~,(t')]) t (14) 
kl ) t = t  , 

Lk(t) = Fk(t) + ~ [4C(-k, k,)/coklFk,(t) 
k~ 

+4re 2 R ( - k ,  k,)Ak,(t) (15) 
kt 

Fk(t) = 2re Z ~, sV(S)(k~, k 2 , . . . ,  k~_,, - k )  
s>3 klk2...ks-1 

x Ak , ( t ) . . .  Ak, ,(t) (16) 

and can be 
Hamiltonian 

R ( - k ,  kl) = ( cok,/cok)C(--k, kO + D ( - k ,  kj) 

+ (4/cok) Z' C(-k, k2)D(-k2, k,) (17) 
k2 

The self-energy operator or response function P(kk', co) appearing in equa- 
tion (12) is given by 

P(kk', co) = (21r)-'((Lk(t) ; L*,(t')))~o (18) 

evaluated via the equivalent zeroth-order renormalized 

~2 , + Hre. = (h/41 ~ [(cok/COk)AkAk COkB*Bk] 
k 

(19) 

as discussed elsewhere (Gairola; 1983, 1984, 1991; lndu, 1990; Indu and 
Gairola, 1985) by separating the response function into real and imaginary 
parts 

P(kk', co + is) = Ak(co) -- iFk(co) ; S ~ 0 + (20) 
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where Ak(o)) and Fk(o)) denote the shift and width in the phonon spectrum, 
respectively, for which one obtains the following expressions: 

A~(co) = A~(co) + Af(~) + A~(co) (21) 

r~(~) = r2(~) + rf(~) + r2~(~) (22) 

where the superscripts A, D, and AD denote the contributions arising due 
to anharmonic, defect, and combined interactions, respectively. These contri- 
butions are given by 

AkA(O)) = A(3)(o)) + A(k4)(O)) (23) 

A(k3)((/)) = 18 E IV(3)(k,, k2, -k)lZq, 
klk2 

x [S~+)co+~(co2-co2+~) - '  + S(-}co_~(co2- co2_~) -T] (24) 

A(k4)(co)=48 ~ I V(4)(k,,k2,k3,-k)12q2 
klk2k3 

x [sF)co+,(co 2 -  co~+~) -1 + 3s~-)co_~(co 2 -  o,2_# '] (25) 

Af(co) = 16P }2 R( -k ,  k l )R*(-k ,  kl)cok(co 2 -  o5~,) -1 (26) 
kl 

A~D(o)) = 16 E lC(-k,  kl)12cok-2A~,(o)) (27) 
kl 

FkA (CO) = Fk(3)(co) + Fk(4)(o)) (28) 

rk(3)(co)=18~re(co) ~ IV(3)(k,,k2,-k)[2r/, 
klk2 

x [S~ +)co+~8(co 2 -  co2+~) + S~-)co-~8(r 2 -  co2-a)] (29) 

F~(4)(co)=481re(c~ Z [ V(4)(kl '  k2, k3, -k)12r/2 
klk2k3 

x [S(2+)co+pS(co 2 - coa+~) + 3S(2 -)o)-p6(co 2 - co2-a)] (30) 

Ff(co) = 16zcr E R ( - k ,  k , )R*(-k ,  k,)COkS(Co 2 -- c~,) (31) 
kl 

F~D(o)) = 16 Z IC(-k,  kl)J2c0~F~,(o) (32) 
kl 

Here P denotes the principal value and e(o)) has the following property: 

{ i f~ c~ 
e(co) = (33) 

- for co<<0 
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In the above equations we introduced the following symbols for convenience: 

with 

S[~)=nk2• S(2• l +nk,nk2+nk2nk3• (34) 

~ i :  ( (OklOJk2 " " " OJk i+l )  / ( ( ~ k l ( ~ k 2  " " " (~)ki+,)  (35) 

rO•177 CO•177177 (36) 

nk = coth(fl htOk/2 ) 

The required Green's function (12) now assumes the form 

Gkk'( CO + it) = rC-J COkrl~z[ CO z -  Cb~ + 2itOkFk( CO ) ] -1 

with 

o ~  = o ~  + 2cokAk(co) 

(37) 

(38) 

(39) 

4. PARTITION FUNCTION 

The partition function for the crystal system can be obtained after 
substituting the value of E from equation (2) into equation (1). The density 
of phonon states is, in the Lehman representation (Dederichs, 1977), 

N(co) = - Z  Im Gkk'(O) + it) (40) 
k 

whence the average lattice energy using equation (2) and equation (38) is 

E = 2 z - J h  f dco CO~CO~?kk,(nk(CO) + �89 

x r~(co)[(co ~ -  -~ 2 ~ ~ -1 C0k) + 4cokF~ (CO)] (41a) 

= Ea+ End (41b) 

where subscripts d and nd represent the diagonal (k = k') and nondiagonal 
(k Ck') contributions, respectively, and are given by 

and 

Ee= ED + A AO Ea + Ea (42a) 

E.a = (2h/Tr) Z COktbk[n(CO) + �89 C5~) -2 (42b) 
k c k '  
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The various contributions to the diagonal part Ed can be expressed in the 
following forms: 

E~ = 16~ie(aSk,) ~ R(-k ,  k , )R*(-k,  k,)rbkCO~COk, 
kl 

x [n(aSk0 + �89 k, -- o5~) -2 (43) 

E,~ ~ 16 ~ ]C(-k, kl)12co[2EJ(k~) (44) 
kl 

E~ = E53) + E54) (45) 

E~ 3) = 36h ~ [g(3)(kl, k2, --k)12co~cbkr/t {e(co+~)S~+)[n(m+~) + �89 
klk2 

x (co2+~- cb~)-2 + e(co_~)S~-)co_~[n(co_~) + �89 ~ -  ebb) -:} (46) 

E~ 4) =96h }2 ]V~4)(k,, k2, k3, -k)]  2 
klk2k3 

2 - (+)  1 x o)kcokrh{e(ro+p)S~ co+An(co+p) + ~] 

x (co2+p - c0~) -2 + 3 e(co _p)S(2 -)w_#[n(co_0) + �89 - o3~) -2} (47) 

Here, EA(kO in equation (44) can be obtained from E~ in equation (45) by 
replacing k with kl. The above equations for the average lattice energy are 
used in equation (1) to obtain the partition function in the form 

Z = Z exp[ - f l (E~ + E~ 3) + E(d 4) + EAO)] 
~k 

~" Z D Z  (3)Z ( 4 ) Z  3 D z 4 D  

(48a) 

(48b) 

with 

i l~ cosech xO(fl) Z D = ~  
kl 

I Z (3~ = ~ I~ cosech x<+3)(fl) cosech x(-3)(fi) 
klk2 

I Z (4) = ~ I~ cosech x(+4)(fl) cosech x(-4)(fl) 
klk2k3 

I Z 3~'= ~ I]  cosech x(+3m(fl) cosech x(-3~)(fl) 
ktk2 

Z 4~ �88 I~ cosech x(+4D)(fi) cosech x (4D)(fl) 
klk2k3 

(49a) 

(49b) 

(49c) 

(49d) 

(49e) 
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In the above equations, we have introduced for convenience the following 
notations: 

xD (fl ) = 8lift e( cbk) R ( - k ,  k l )R* ( - k ,  k, )C0203kC01 (092, -- O52) -2 

= f i x  D (50a) 

x<*3)(fl) = 18hill g(3)(kl,  k2, -k)12rh co~,cbke((o.~) 
~-T (*) ~., { .2 x ~,1 ~ , . ~ , . , -  ~ h  -2 

= flS~*)x (:~3) (50b) 

~(=k) �9 [ ~2 _ .~2-~--2 
X 0 2  , - u . B t u - , •  fl U.,k) 

= 1~8(2 * )X (.4) (50C) 

X(*3D)(]~) = 288hfl(w,/co~)~o~l C(-k, k,) V(k,, h ,  -k) l  2 

x o1 ~ ( ~ o . o ) s W c o . . ( ~ o L -  ~2)-~ 

= flS~*)x (.3~) (SOd) 

X(*4D)(fl) = 7681ifl(CO1/COk)aNk]C(--k, kl)  V(k~ , k2, k3, -k) l  2 

= ]~S (*)36 "(.t=40) (50e)  

where COk, = CG has been written for brevity. 

5. FREE ENERGY 

Having obtained the appropriate partition function for the anharmonic 
crystal containing substitutional impurities, we can calculate the Helmholtz 
free energy in the following form: 

F =  _f l - i  In Z = F D -t- F (3) + F (4) q- F 3D + F 4D (51 ) 

where 

F D= fl-~ ~ In[2 sinh x~ (52a) 
kl 

F(3) = fl  I ~ In[4 s i n h  x(+3/(f l )  sinh x(-3)(fl)] (52b) 
klkz 

F(4) = fl  1 ~ l n [4  sinh x(+4)(fl) sinh X(--4)(fl)] (52c) 
k I k2k3 

F 3D= fl-J ~ ln[4 sinh X(+3D)(j~) sinh x(-3~ (52d) 
ktk2 
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and 

F4O= fl-I Z 
klk2k3 

ln[4 sinh x(+4~ sinh X(-4D)(~)] (52e) 

The defect contribution to the free energy is given by equation (52a). In the 
classical high-temperature limit (indicated by subscript h) the contribution 
becomes 

F~ ~ []3 -l  ln(2/~x ~ + (p/31)(XD) 2 + (~3/5!)(Xe)' +" "" ] 
kl 

(53) 

The temperature dependence as given by equation (53) resembles the results 
of Maradudin et al. (1961) derived in the harmonic approximation. This is 
because the presence of defects is encountered in the problem through a 
quasiharmonic Hamiltonian [equation (9)]. However, the effects of the 
defect contribution and the frequency dependence are contained in equation 
(53) through the parameter x D, which can be read from equation (50a). 

The low-temperature limit (represented by l) of F v is as follows: 

F D ~ .  {X D- ~-lIexp(--2flx D) + �89 exp(--4flx e) + . . .  ]} 
kl 

(54) 

The temperature dependence in equation (54) again resembles closely the 
low-temperature results of Maradudin et al. (1961) obtained in the harmonic 
approximation. The defect contribution to the free energy of a doped crystal 
has hardly been discussed in the literature. 

We now discuss the anharmonic contribution to the free energy, which 
has widely been discussed by several authors (Maradudin et al., 1961 ; Born 
and Huang, 1954; Shukla and Miiller, 1970, 1971; Shukla, 1966, 1980; 
Shukla and Wilk, 1974; Cowley and Shukla, 1974; Shukla and Taylor, 1974; 
Barron, 1963) using different approaches. The cubic anharmonic contribu- 
tion given by equation (52b) reduces in the high-temperature limit to 

F}3)~-fl -I ~ {In[4(~S~+I)xr ))x (-3)] 
klk2 

+ 1 [(/~S~+~x(+3))2 + (/~S~_~x(_3))2 t 

+L [(~s~+~x,+~),+ (ps~-~x~-'~)41 + . . -  } 
5~ 

(55) 
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In the low-temperature limit, this becomes 

f}3) ------- 2 ~-1 {(/~S~ +)x (+3) "[- ~S~-)x  (-3)) 
ktk2 

- [exp(-2flS~+)x(+3~) + exp(-2flS~+~x(-3~)]} 

At high temperatures, 

flS~• q-- O)kl I ) 

whereas at low temperatures 

flS~• + 2 exp(--nflli~k) ] 
n=l 

871 

(56) 

It should be recalled that the renormalized phonon frequencies Chk are tem- 
perature dependent, given by 

with 

(57a) 

Ok(f, T) = f~ff + I)~ + f22 ~ (57b) 

n ff = 4[C(-k,  k,) + D(-k,  k,) + D(-k,  -k') + (COk,/Cok)C(--k, -k ')]  

+(16/COk) ~ (coz/ook)[C(-k, k , )+D(-k,  -k')]  
k' 

+D(-k, k')[1 + C(-k, kl)] + C(-k, k,)D(-k, k,) (57c) 

f~A=--12tr ~, [ 4 V 3 ( - k , , - k ' , - k ) V 3 ( k , , k 2 , - k )  
klk2 

- -  V4( k, , k2 , - k ' ,  --k )O)k']Jk( O) ) (57d) 

~ =  -48~r ~ C(-k, k,)[4V3(k,, k', -kl)V3(k,, k2, -k)  
klk2 

- V4(k~, k2, -k' ,  --k)COk~COk,1]Jk(CO) (57e) 

where Jk(CO) is the spectral density function a n d f i s  the fractional impurity 
concentration (n/N). 

902/32/5-12 
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The quartic anharmonic contribution to the free energy in the high- 
temperature limit is given by 

F(h4)~_ fl-I ~ tln[n(flS(2+ ))x(+4)(flS(2- ))x(-4) ] 
klk2k3 L 

1 "t--- [(flS(2+)x(+4))2--I - (flS(2-)x(-4))2-q - (flS(2-)x(-4)) 2] 
3! 

+l 
[(~8(2+)x(+4)) 4-~ (J~g(- )x( -4) )  41 '~" "" l (58) 

5~ ) 

The low-temperature limit of F (4) is given as 

F~ 4)~- Z {[(S(2+)x(+4) + S(2-)x(-4))] 
klk2k3 

-fl-~[exp(-2flS(2+)x(+4))+exp(-2flS(2-)x(-4))] } (59) 

The factors flS(2 ~) in the above expressions tend to (kBT) and (kBT) -1 in 
the high- and low-temperature limits, respectively. 

The free energy contributions by the interacting terms between cubic 
anharmonic and defects ( f  3D) and quartic anharmonic and defects (F 4~ at 
high and low temperatures are given by 

F3D~_fl-I ~ {ln(4flS~ + )x(+3D)flS~-)x (-3D)) 
klk2 

+ (1/3!)[(ps~+~x(+3"~)2+ (ps~-~x(-3"~)2 l 
~- (1/5!)[(~8~+)x(+30))4-~ ( ~ S ~ - ) x ( - 3 ~  41 - [ - ' ' '  } (60) 

r4O ~_ p-I 2 {ln(4flS~+)x(+am/3S(2 -)x (-4~ 
klk2k3 

+ ( 1/3!)[(flS(2 + )X(+4D)) 2 + (flS(2 - )X(-4D)) 21 

+ (1/5!)[(flS(2+)X(+4D))4+ (~S(2-)x(-nD)) 4] -1-" " �9 } (61) 

F~ D ~- 2 { (S~ +)x(+3m + S~-)x (-3m) 
klk2 

-B-I[exp(-2flS~+)x(+3m)+exp(-2flS~-)x<-3D))]} (62) 

F4D-~ Z {(S(2+)x(+4D) ~ - S ( - ) X ( - 4 D ) )  
kl k2k3 

- fl-l[exp(-2flS(2+)x (+4D)) + exp(-2flS(2-)x(-4m)]} (63) 

6. E N T R O P Y  

The anharmonic contribution to the entropy of a doped crystal has not 
been much discussed in the literature. Usually, the anharmonic contribution 
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is obtained by replacing the harmonic phonon frequencies by mean anhar- 
monic frequencies in the harmonic expression (Barron, 1965 ; Hui and Allen, 
1975) (quasiharmonic approximation), which obviously is a crude approxi- 
mation. In the present work, the various contributions to the crystal entropy 
are obtained through equation (5), using a nonperturbative technique, in 
the following form: 

where 

with 

S = S o +  S A + S A~ (64) 

s D ~  

S (3) = 

S(4)= 

S (3D) = 

S (4D) = 

- N k n  In 2 - kB ~ [In sinh(flx D) - nDflx D] (65a) 
kl 

-2N2kB  In 2-kB ~ {ln[sinh(flx (+3)) sinh(flx(-3))] 
klk2 

--fl[x(+3)n+3ff~ q- x(-3)n-3o'l]  } (65b) 

-2N3kaln 2-kB ~ {ln[sinh(flx (+4)) sinh(flx(-4))] 
klk2k3 

--fl[X(+4)n+40"~ - + 3X(-4)n-40"Y] } (65C) 

-2NEka In 2-kB Y~ {ln[sinh(flx (+3~ sinh(flx(-3D))] 
klk2 

--fl[X(+3D)n+3D~Y + "t- X(--3D)n_3D~I ] } (65d) 

- 2 N 3 k B l n  2-kB ~ {ln[sinh(flx (+4D)) sinh(flx(-4m)] 
klk2k3 

--j~[X( +4D)FI+4D[~ -~ 3X(-4D)n-4Dr ] ) (65e) 

ni=coth( f lx i ) ;  i = D ,  (+3), (+4), (4-3D), (+4D) (66a) 

r = S~ +) - (flh)[co2(n~ - 1) -4- co j (n~ - 1)] (66b) 

f f~=S(2•  (66c) 

nj=coth( f l t icoj2) ,  j =  1, 2, 3 . . . .  (66d) 

tT~ = coj(n~ - 1) (66e) 

The above expressions (65) for the entropy describe the effect of cubic 
and quartic anharmonicity besides the defect parameters. However, the 
temperature dependence of the entropy is manifested in two ways: the 
direct dependence can be found by inspection through fl terms, whereas the 
implicit dependence is revealed through renormalized phonon frequencies 
[equation (57)]. 
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7. LATTICE HEAT CAPACITY 

The temperature derivative of the entropy function leads to the LHC 
equation (6) as follows: 

C~ = C o +  C (3) + C (4) + C (3D) + C (4D) (67) 

with 

C D= kB ~ [xD(fl)] 2 cosech 2 xD(fl) (68a) 
kl 

C (3) = k.fl Z { (fl/i)[x(+3)n+3(d2 2 + ~[) + x(-3)n_3(~- r]~) - flhco2n2~]] 
ktk2 
( + 3 )  + 2 ~ 2  ( - 3 )  -- 2 ~ 2  + 2 x  (or1) n + 3 - 2 x  (oh) n-3} (68b) 

C(4)=kBf l  2 Z {x(+4)n+n[X(+4)(n+4)-l(n+4 - 1)(o-~-)2-V~o~ -] 
klk2k3 

+x(-4)n-4[3x(-a) (n- ,O- l (n_4 - 1)(o-2-) 2-3Vpcr2 - (2fl)-1o-2]} (68c) 

C (3D) = k~/~ Z {x(+3D)n+3~ + x(-3D)n-3D~; 
klk2 

-- fl X( + 3D)[n+3DV oCr~{ -- ~2+3D(O-~-)2 ] 

- [3X(-3D)[n--3DVzCrl - ~2-3D(O'1-) 2] } (68d) 

c ( 4 D )  = kBfl 2 E { X(+4D)FI+4DO'~ -[- X(--4D)n-4DO'2 
klk2k3 
( + 4 D )  + ~2 + 2 

-- fiX [n+4DV/~o"2 -- n+4D(O'2 ) ] 

-- 3fiX (-4D) [n-4oV#o'2 --/~2-4D(O'2)2] } (68e) 

with 

V~cr~- = (h/2)[flh(~Zcozn2 • ;l12OJlr/l) - (/~22 • ;~2)] (69a) 

Vzo-f = 2V~S(2 :~) -/3V~S(2 +) (69b) 

VpS(2 :~) = :F (h /Z ) [~ (n2  + n3) -4- ~(n3 • n,) -4- ~(n ,  • n2)] (69c) 

V}S(2 :~ > = ( h / 2  )[ ~n~n:( o ) , ~  + co2~) 

+n2n3(c02~ + c03~) • n3n, (o~3r~ + co,~) 
~2 ~2 - 2  ~2 ~2 -2 •  + n2n3 + n3nl] (69d) 

8. DISCUSSION AND CONCLUSIONS 

In the present paper, we have started with the various contributions 
( Z  D, Z A, z AD) to the partition function of the impurity-induced anharmonic 
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crystal and subsequently developed this approach to evaluate these contribu- 
tions to various other thermodynamic properties of the crystal. These include 
the free energy, entropy, and the lattice heat capacity. 

The expression for the free energy is given by equation (51), whose 
high- and low-temperature limits Fh and Ft, for various contributions, have 
been mentioned in Section 5. These expressions frequently involve terms like 
/3S} ~) and /3S(2 ~ .  It should be noted that at high and low temperatures 
these terms vary as 

/~S~ +) ___ 2/i(o53 -14- o5~ -1) 

/3 exp( - f lhcok)  

high-temperature limit (70a) 

low-temperature limit (70b) 

and 

flS~ • )'~ fl -J ~ k B T  

~f l  ~(kBT)  -1 

high-temperature limit (71a) 

low-temperature limit (71b) 

Equation (70a) represents the implicit temperature dependence of the term 
/3S~ • through the renormalized temperature-dependent frequencies oSj 
and c52. 

The entropy of the doped anharmonic crystal is given by equation (64), 
with the various contributions mentioned in equation (65). The high- and 
low-temperature limits of these contributions can be summarized as follows: 

SO = -kB Z [In flxO+ (/3x~ + .  �9 -] (72a) 
k~ 

S~ = - k ,  Z [//xD + In(1 - e-2~"~)] (72b) 
kl 

S}, 3~ = -kB E {In(/32x~+3)x~ 3)) + (/32/3!)[(x~+3))2 + (x~-3))2] + . . .  
klk2 

-/3SI +) -/3S~ -~ + (2/fl2h)[(co2/ch~) 2 -  (co ~/o5~)2]} (73a) 

-~ --kB ~ (ln(fl2x(+3)x(-3)) + (f12/3!)[(X(+3))2 + ( x ( -3 ) )  2] + .  �9 �9 
klk2 

- 2 h - '  [2o5~ 1 - (1//32) (o52 -2 - 05]-2)] } (73b) 

S} 3) = --kB ~] {/3(x ~+3~ + x ~-39) + ln[(1 -- e -ax'+~) (I -- e-~:"-~')] 
klk2 

--fl(x(+3)n+30~ + x(-3)n-3o'l )l} ( 7 4 )  
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where ( . . . ) t  denotes the low-temperature limit of the quantity, with the aid 
of the functional reduction 

coth(flhcoJ2)=nj=~(l + 2 ~ e -"a~~ (75) 
n=l 

In the similar way, the high- and the low-temperature limits of the other 
contributions S (4), S (30), and S ~ can be obtained. 

The LHC of the anharmonic disordered crystal is given by equation 
(67), with various contributions mentioned in equation (68). Experiments 
(Launay, 1956; Kagan and Ioselevskii, 1963; Karlsson, 1970; Hartmann 
et al., 1970) show that the LHC is highly sensitive at low temperatures. It 
is well known that defects play an important role in the low-temperature 
region in describing the dynamical properties of solids. Several authors 
(Manheim, 1968; Agrawal, 1980; Tiwari and Agrawal, 1973) have described 
the change in the LHC due to substitutional impurities by considering the 
effect of force constant change only, but the present theory (Indu, 1990) 
suggests that this change depends not only on the mass change parameters 
and the force constant changes, but also on the cross terms of third- and 
fourth-order anharmonic parameters with the defect terms (such as C ~ 
and C(4~ The change in the LHC due to the introduction of impurities is 
given by 

ACo = c D - [  - C (3D) -~ C (4D) (76) 

where C ~ gives the leading contribution. At low temperature this varies as 
exp(-2flxD), and it becomes independent of temperature in the classical 
high-temperature limit. 

In the present work, we have discussed the thermodynamic properties 
of an impure anharmonic crystal by considering the average lattice energy 
based on the DOS, which, in turn, depends on the imaginary part of the 
Green's function, here evaluated without using any quasiharmonic approxi- 
mation. The shortcoming of the quasiharmonic approximation in the evalua- 
tion of thermodynamic properties has already been remarked by Barton 
(1963). One important feature of this work is that the DOS is also tempera- 
ture dependent besides its dependence on impurity concentration (Indu, 
1990). A knowledge of the average lattice energy E leads to the evaluation of 
the partition function and consequently to the other related thermodynamic 
properties. The various expressions for these properties involve the entire 
phonon spectrum, through the present Green's functions. The evaluation of 
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these G r e e n ' s  f unc t i o n s  inc ludes  the c o n t r i b u t i o n s  o f  all poss ib le  i m p u r i t y  

modes ,  a n h a r m o n i c  modes ,  a n d  in te r fe rence  (AD)  modes .  
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